Catalysts serve pivotal roles in facilitating the development of sustainable energy systems on a global scale. Liquid metal usually refers to metal that is liquid below 330 °C, also known as low melting point metal. Liquid metal has emerged as an intriguing catalyst due to its commendable electrical conductivity, favorable fluidity, solubility in metals, phase transition capabilities, and modifiable oxide surface, thereby presenting a plethora of prospects for diverse catalytic reactions. In this Perspective, we elucidate the four primary merits of liquid metal catalysts: resistance to coking, the ability to tune elemental composition, the potential for structural transformation, and the capacity to inhibit coalescence. In light of this, a comprehensive summary is presented on the research advancements pertaining to liquid metal in methane pyrolysis, alkane dehydrogenation, carbon dioxide reduction, alcohol oxidation, and various other catalytic reactions. Finally, the challenges and prospects of liquid metal catalysts are elucidated.