Graph sampling allows mining a small representative subgraph from a big graph. Sampling algorithms deploy different strategies to replicate the properties of a given graph in the sampled graph. In this study, we provide a comprehensive empirical characterization of five graph sampling algorithms on six properties of a graph including degree, clustering coefficient, path length, global clustering coefficient, assorta-tivity, and modularity. We extract samples from fifteen graphs grouped into five categories including collaboration, social, citation, technological , and synthetic graphs. We provide both qualitative and quantitative results. We find that there is no single method that extracts true samples from a given graph with respect to the properties tested in this work. Our results show that the sampling algorithm that aggressively explores the neighborhood of a sampled node performs better than the others.