Several procedures were evaluated for the preparation of lithium 4,4'-di-tert-butylbiphenylide (LiDBB, Freeman's reagent) from lithium metal and 4,4'-di-tert-butylbiphenyl (DBB) in THF. Solutions with nominal concentration of 0.4 and 1.0 M were formed. The stability of LiDBB solutions was evaluated over time, and the gradual uptake of lithium metal was observed. At 0 °C the LiDBB solutions were stable for over a week in THF. At 20 °C the LiDBB solution underwent various decomposition pathways, which led to uptake of more lithium metal and the accumulation of side products. These decomposition pathways were studied, and the importance of ethene in the destruction of THF by LiDBB was observed. On a practical note, LiDBB solutions in THF were stable and effective for over a week at 0 °C or for more than 37 weeks when stored under argon at -25 °C. These observations will extend the utility of LiDBB as a reagent in organic synthesis.