Die mittels Dichtefunktionaltheorie berechneten Energiebarrieren für die H-Abstraktion durch Sauerstoffradikale in Li-dotiertem MgO sind viel kleiner (12±6 kJ mol-1) als die Barrieren, die man bei unterschiedlichen Methanaktivierungsexperimenten findet (80–160 kJ mol-1). Das nährt weitere Zweifel an Lunsfords Hypothese, dass Li+O.--Paare die aktiven Zentren sind. Temperaturprogrammierte oxidative Kupplungsreaktionen von Methan (OCM) zeigen, dass bei reinem und Li-dotiertem MgO die gleichen Zentren für die Reaktion verantwortlich sind. MgO-Katalysatoren, die durch Sol-Gel-Synthese hergestellt wurden, zeigen große Unterschiede zwischen anfänglicher Aktivität und der Aktivität im stationären Zustand. Transmissionselektronenmikroskopie zeigt, dass damit substanzielle morphologische Veränderungen und Restrukturierungen der Oberfläche einhergehen. Berechnungen an (MgO)9-Clustermodellen ergeben, dass CH4 heterolytisch an Mg2+O2--Paaren chemisorbiert wird, die sich an Stufen oder Ecken befinden. Die homolytische Freisetzung von Methylradikalen erfordert jedoch die Anwesenheit von O2 auf der Oberfläche