The growing demand for energy storage application has facilitated the development of Li-ion rechargeable batteries (LIBs). As such, there is an urgent need to design electrodes with a high specific energy and long cycle life. The evolution of conventional LIB cathode materials in past 30 years has arrived at a bottleneck. Fortunately, the finding of the lithium-rich cation disordered rocksalt (DRXs) has largely broadened the element ranges of the promising cathode in the past several years. Compared with the classical cation-ordered oxides, the DRXs display a large charge storage capacity based on both transition metal and oxygen redox capacity. In addition, their wide compositional space and cobalt-free characteristic would greatly reduce production costs in promoting the commercialization process. Herein, we make an overview of the recent progress for DRX materials, in terms of their compositions and structure, Li diffusion, charge storage mechanisms, and different redox centra-based system. The key challenges to practical application are also discussed. Last but not least, in order to design high-performance DRXs, we outlined perspectives in developing DRXs for next generation of LIB cathodes.