It has been proposed that lithium is effective in bipolar disorder (BD) by inhibiting glutamatergic neurotransmission, particularly via N-methyl-D-aspartate receptors (NMDARs). To test this hypothesis and to see if the neurotransmission could involve the NMDARmediated activation of phospholipase A 2 (PLA 2 ), to release arachidonic acid (AA) from membrane phospholipid, we administered subconvulsant doses of NMDA to unanesthetized rats fed a chronic control or LiCl diet. We used quantitative autoradiography following the intravenous injection of radiolabeled AA to measure regional brain incorporation coefficients k* for AA, which reflect receptormediated activation of PLA 2 . In control diet rats, NMDA (25 and 50 mg/kg i.p.) compared with i.p. saline increased k* significantly in 49 and 67 regions, respectively, of the 83 brain regions examined. The regions affected were those with reported NMDARs, including the neocortex, hippocampus, caudate-putamen, thalamus, substantia nigra, and nucleus accumbens. The increases could be blocked by pretreatment with the specific noncompetitive NMDA antagonist MK-801 ((5R,10S)-( + )-5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine hydrogen maleate) (0.3 mg/kg i.p.), as well by a 6-week LiCl diet sufficient to produce plasma and brain lithium concentrations known to be effective in BD. MK-801 alone reduced baseline values for k* in many brain regions. The results show that it is possible to image NMDA signaling via PLA 2 activation and AA release in vivo, and that chronic lithium blocks this signaling, consistent with its suggested mechanism of action in BD.