Lithium-ion batteries (LIBs), with relatively high energy density and power density, have been considered as a vital energy source in our daily life, especially in electric vehicles. However, energy density and safety related to thermal runaways are the main concerns for their further applications. In order to deeply understand the development of high energy density and safe LIBs, we comprehensively review the safety features of LIBs and the failure mechanisms of cathodes, anodes, separators and electrolyte. The corresponding solutions for designing safer components are systematically proposed. Additionally, the in situ or operando techniques, such as microscopy and spectrum analysis, the fiber Bragg grating sensor and the gas sensor, are summarized to monitor the internal conditions of LIBs in real time. The main purpose of this review is to provide some general guidelines for the design of safe and high energy density batteries from the views of both material and cell levels.