Geochemical data are compositional in nature and are subject to the problems typically associated with data that are restricted to the real non-negative number space with constant-sum constraint, that is, the simplex. Geochemistry can be considered a proxy for mineralogy, comprised of atomically ordered structures that define the placement and abundance of elements in the mineral lattice structure. Based on the innovative contributions of John Aitchison, who introduced the logratio transformation into compositional data analysis, this contribution provides a systematic workflow for assessing geochemical data in an efficient way, such that significant geochemical (mineralogical) processes can be recognized and validated. The results of a workflow, called GeoCoDA and presented here in the form of a tutorial, enables the recognition of processes from which models can be constructed based on the associations of elements that reflect mineralogy. Both the original compositional values and their transformation to logratios are considered. These models can reflect rock forming processes, metamorphic, alteration and ore mineralization. Moreover, machine learning methods, both unsupervised and supervised, applied to an optimized set of subcompositions of the data, provide a systematic, accurate, efficient and defensible approach to geochemical data