2020
DOI: 10.1017/s1751731120000324
|View full text |Cite
|
Sign up to set email alerts
|

Live animal predictions of carcass components and marble score in beef cattle: model development and evaluation

Abstract: Until recently, beef carcass payment grids were predominantly based on weight and fatness categories with some adjustment for age, defined as number of adult teeth, to determine the price received by Australian beef producers for slaughter cattle. With the introduction of the Meat Standards Australia (MSA) grading system, the beef industry has moved towards payments that account for intramuscular fat (IMF) content (marble score (MarbSc)) and MSA grades. The possibility of a payment system based on lean meat yi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
5
0
3

Year Published

2021
2021
2023
2023

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 9 publications
(8 citation statements)
references
References 22 publications
0
5
0
3
Order By: Relevance
“…The BeefSpecs drafting tool (Walmsley et al 2014; http://beefspecs.agriculture.nsw.gov.au/drafting) has been developed to assist producers manage cumulative risks associated with meeting market specifications [final P8 fat (mm) and hot standard carcass weight (kg)]. The enhanced BeefSpecs tool predicts lean meat yield, Meat Standards Australia (MSA) marbling and MSA index to assist producers make informed marketing decisions for emerging markets on live cattle before slaughter (McPhee et al 2020). The critical inputs are frame score, P8 fat and muscle score (MS).…”
Section: Special Thanks To the Meat And Livestock Australia For Helping Fund This Workmentioning
confidence: 99%
“…The BeefSpecs drafting tool (Walmsley et al 2014; http://beefspecs.agriculture.nsw.gov.au/drafting) has been developed to assist producers manage cumulative risks associated with meeting market specifications [final P8 fat (mm) and hot standard carcass weight (kg)]. The enhanced BeefSpecs tool predicts lean meat yield, Meat Standards Australia (MSA) marbling and MSA index to assist producers make informed marketing decisions for emerging markets on live cattle before slaughter (McPhee et al 2020). The critical inputs are frame score, P8 fat and muscle score (MS).…”
Section: Special Thanks To the Meat And Livestock Australia For Helping Fund This Workmentioning
confidence: 99%
“…The data of the lifetime evaluation of cattle will allow calculating the genetic parameters of the correlation and breeders will be able to choose animals that produce carcasses with a greater proportion of weight in more valuable carcass areas (Moore et al, 2017). The use of lifetime evaluation of animals to predict the future composition of carcasses allows producers to make informed management decisions before slaughter to increase profitability (McPhee et al, 2020).…”
Section: Introductionmentioning
confidence: 99%
“…Ainda é escassa a quantidade de pesquisas que desenvolveram equações para predição do PCar de bovinos. Dentre as equações encontradas durante a revisão da literatura, algumas apresentam limitações quanto a praticidade para utilização (Bozkurt et al, 2007;McPhee et al, 2020), enquanto que outras, utilizaram bancos de dados que não representam as características genéticas, sistema produtivo, e critérios de avaliação da carcaça de bovinos criados e abatidos no Brasil (Tatum et al, 2012;McPhee et al, 2020).…”
Section: Lista De Ilustraçõesunclassified
“…Porém, utilizar o GPD como único indicador de desempenho pode induzir a conclusões com alto potencial de serem equivocadas, afirmação que pode ser justificada pela diferença na composição corporal dos animais de acordo com o frame size, sexo, grupo genético e programa nutricional prévio ao confinamento (Fox e Black 1984;Owens et al 1993, Owens et al 1995, que por sua vez influencia a energia líquida de mantença dos animais e o GPD, como também, devido ao GPD ser composto por ganho de carcaça somado a órgãos e ao conteúdo ruminal (Tolley et al, 1988;Moreira, 2018). O empenho em pesquisas nesta última década demonstrou interesse no desenvolvimento de equações para predizer o PCar de bovinos de corte (Bozkurt et al 2007;Tatum et al, 2012;McPhee et al, 2020;Benedeti et al, 2021;Assis et al, 2022), porém, a maior parte destas equações não são adequadas para predizer PCar…”
Section: Interação Entre Modelos Matemáticos E Métricas De Desempenho...unclassified
See 1 more Smart Citation