Energy expenditure (EE) is generally viewed as tumorigenic, due to production of reactive oxygen species (ROS) that can damage cells and DNA. On this basis, individuals within a species that sustain high EE should be more likely to develop cancer. Here, we argue the opposite, that high EE may be net protective effect against cancer, despite high ROS production. This is possible because individuals that sustain high EE have a greater energetic capacity (= greater energy acquisition, expenditure, and ability to upregulate output), and can therefore allocate energy to multiple cancer-fighting mechanisms with minimal energetic tradeoffs. Our review finds that individuals sustaining high EE have greater anti-oxidant production, lower oxidative stress, greater immune function and lower cancer incidence. Our hypothesis and literature review suggest that EE may indeed be net protective against cancer, and that individual variation in energetic capacity may be a key mechanism to understand the highly individual nature of cancer risk.