Oxidative protein folding in the endoplasmic reticulum (ER) depends on the coordinated action of protein disulfide isomerases and ER oxidoreductins (EROs). Strict dependence of ERO activity on molecular oxygen as the final electron acceptor implies that oxidative protein folding and other ER processes are severely compromised under hypoxia. While many key players involved in oxidative protein folding are known, our understanding of how redox homeostasis in the ER is maintained and how EROs, the Cys residues of nascent proteins, and the luminal glutathione redox buffer interact is limited. Here, we isolated viable ero1 ero2 double mutants largely deficient in ERO activity, which rendered the mutants highly sensitive to reductive stress and hypoxia. To elucidate the specific redox dynamics in the ER lumen in vivo, we expressed the glutathione redox potential (EGSH) sensor Grx1-roGFP2iL-HDEL with a midpoint potential of -240 mV in the ER of Arabidopsis plants. We found EGSH values of -241 mV in wild-type plants, which is less oxidizing than previously estimated. In the ero1 ero2 mutants, luminal EGSH was reduced further to -253 mV. Recovery to reductive ER stress, as induced by acute exposure to dithiothreitol, was delayed in ero1 ero2 mutants. The characteristic signature of EGSH dynamics in the ER lumen triggered by hypoxia was affected in the ero1 ero2 mutant reflecting a disrupted balance of reductive and oxidizing inputs, including nascent polypeptides and glutathione entry. The ER redox dynamics can now be dissected in vivo, revealing a central role of EROs as major redox integrators to promote luminal redox homeostasis.One sentence summaryDynamic monitoring the ER luminal glutathione redox potential highlights the role of EROs in defining redox conditions and the interplay between different redox inputs during hypoxia and reductive stress.