Autonomous driving and e-mobility are swiftly becoming not only the work of science fiction or popular science, but a reality.A key focus of manufacturers and suppliers in the automotive domain is of course to specify systems that implement this reality. Often, scenarios at type-level are used throughout the development process to specify system behavior and interaction within the car, as scenario models are comparatively easy to understand and can easily be subjected to manual validation. However, autonomous driving and e-mobility require interaction not just of systems within the same car, but collaboration between multiple cars as well as between cars and miscellaneous road infrastructure (e.g., smart road signs). The car becomes a Cyber-Physical System that dynamically forms collaborating networks at runtime with other Cyber-Physical System to create functionality that goes beyond the scope of the individual vehicle (e.g., resolve a traffic jam). Consequently, a plethora of possible compositions of such a network exist and must be specified and validated completely to assure their adequate and safe execution at runtime. Doing this at type-level with scenario models becomes prohibitively tedious, error prone, and likely results in unrealistic development cost. To combat this issue, we investigate the use of multi-level Message Sequence Charts to allow for specifying interaction scenarios between collaborative Cyber-Physical System in a network of collaborating automotive Cyber-Physical System. To assist the developer in systematically defining multi-level Message Sequence Charts, we propose two processes. The resulting diagrams use a mixture of type and instance-level abstractions within one conceptual diagram. This allows reducing the required effort to manually validate the adequacy of scenarios to a manageable amount because information within the scenarios can be validated in batches. At the same time, instance-level defects become more obvious. Evaluation results from a controlled experiment show that multi-level Message Sequence Charts contribute to effectiveness and efficiency of manual validation for collaborative automotive Cyber-Physical System.