Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The appearance of construction defects in buildings can arise from a variety of factors, ranging from issues during the design and construction phases to problems that develop over time with the lifecycle of a building. These defects require repairs, often in the context of a significant shortage of skilled labor. In addition, such work is often physically demanding and carried out in hazardous environments. Consequently, adopting autonomous robotic systems in the construction industry becomes essential, as they can relieve labor shortages, promote safety, and enhance the quality and efficiency of repair and maintenance tasks. Hereupon, the present study introduces an end-to-end framework towards the automation of shotcreting tasks in cases where construction or repair actions are required. The proposed system can scan a construction scene using a stereo-vision camera mounted on a robotic platform, identify regions of defects, and reconstruct a 3D model of these areas. Furthermore, it automatically calculates the required 3D volumes to be constructed to treat a detected defect. To achieve all of the above-mentioned technological tools, the developed software framework employs semantic segmentation and 3D reconstruction modules based on YOLOv8m-seg, SiamMask, InfiniTAM, and RTAB-Map, respectively. In addition, the segmented 3D regions are processed by the volumetric modeling component, which determines the amount of concrete needed to fill the defects. It generates the exact 3D model that can repair the investigated defect. Finally, the precision and effectiveness of the proposed pipeline are evaluated in actual construction site scenarios, featuring reinforcement bars as defective areas.
The appearance of construction defects in buildings can arise from a variety of factors, ranging from issues during the design and construction phases to problems that develop over time with the lifecycle of a building. These defects require repairs, often in the context of a significant shortage of skilled labor. In addition, such work is often physically demanding and carried out in hazardous environments. Consequently, adopting autonomous robotic systems in the construction industry becomes essential, as they can relieve labor shortages, promote safety, and enhance the quality and efficiency of repair and maintenance tasks. Hereupon, the present study introduces an end-to-end framework towards the automation of shotcreting tasks in cases where construction or repair actions are required. The proposed system can scan a construction scene using a stereo-vision camera mounted on a robotic platform, identify regions of defects, and reconstruct a 3D model of these areas. Furthermore, it automatically calculates the required 3D volumes to be constructed to treat a detected defect. To achieve all of the above-mentioned technological tools, the developed software framework employs semantic segmentation and 3D reconstruction modules based on YOLOv8m-seg, SiamMask, InfiniTAM, and RTAB-Map, respectively. In addition, the segmented 3D regions are processed by the volumetric modeling component, which determines the amount of concrete needed to fill the defects. It generates the exact 3D model that can repair the investigated defect. Finally, the precision and effectiveness of the proposed pipeline are evaluated in actual construction site scenarios, featuring reinforcement bars as defective areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.