The purpose of this study was to propose a novel evaluation index for the effects of shear stress level and exposure time on hepatocyte damage. Suspensions of rat hepatocytes (0.5 mL) were subjected to shear stress from 1.2 to 3.1 Pa for 10 min (n = 3) using a rheoscope. We counted living and dead cells in photographs taken at 1-min intervals using a digital camera attached to the microscope. Living and dead cells were distinguished using a Trypan blue exclusion test. Under each level of shear stress, at each 1-min time interval, we measured the viability [living-cell number (t)/countable cell number (t)] and the ratio of living cells [RLC: living-cell number (t)/countable cell number in the initial condition]. The effects of shear stress and exposure time on viability and RLC were assessed by multiple regression analysis. As expected, we observed an increase in the number of dead cells and little change in the number of living cells when shear stress was increased. The coefficient of determination (R (2)) to predict the effectiveness of viability and RLC indicated a low to moderate correlation. Viability correlated with shear stress and exposure time (p < 0.001); however, RLC only correlated with exposure time of shear stress (p < 0.001). In this test condition, viability was strongly related not to living-cell damage but to dead-cell damage. Therefore, we propose RLC as a novel and effective index for investigating the effect of shear stress on living hepatocytes.