Noncommutative Geometry recently attracted growing interest of cosmologists, mainly after the greatest success of unifying the forces of nature into a single gravitational spectral action in a purely algebraic way, rather than as being an entirely new formalism. In the present work, we discuss a multidimensional Friedmann-Robertson-Walker flat universe in which the perfect fluid has a Gaussian profile in time and depends on a fundamental minimal length √ θ like ρ = ρ(0) exp(−t 2 /4θ) for some positive constant ρ(0). This special form is motivated by a more recent noncommutative inflationary cosmological model, which was found to be able to drive the universe through a bounce without the need of any scalar field. Furthermore, we conjecture that the generalized equation of state has the special form p = ωa m ρ − ρ, (ω, m) ∈ R where a(t) is the scale factor. It was found that the expansion of the multidimensional universe accelerates in time and is dominated for very large time by quintessence. Many additional consequences are revealed and discussed in some detail.Keywords Noncommutative geometry · Higher-dimensional cosmology · Accelerated expansion · QuintessenceThe recent discovery of the accelerated expansion of the universe based on the CMBR dataset of the Three-Year WMAP observations and results obtained using combined WMAP data and data from Supernova Legacy Survey of type Ia and galaxy ( Schmidt et al. 1998;Steinhardt et al. 1999;Persic et al. 1996;Alcaniz 2004) push the theorists into the belief that standard Hot Big Bang cosmology (HBBC) is not really the complete and successful theory for the description of the evolution of the universe. The HBBC model fails to explain two old problems: the flatness problem and the homogeneity of the universe on large scales. Astronomical observations indicate that the density parameter Ω k = −0.015 +0.020 −0.016 (within a 2% margin of error), i.e. the universe is flat as predicted by inflation theory. The inflationary scenario offers a possible solution to the flatness and homogeneity problems but fails to answer the question "why the cosmos expands in time". Theorists tried to answer this embarrassing question by conjecturing the existence of a mysterious form of dark energy (DE) with negative pressure obeying the equation of state parameter (EoSP) w = −1.06 +0.13 −0.08 (Riess et al. Here w = p/ρ where ρ and p are respectively the density and pressure of the perfect fluid. However, for models described by w > −1, the null energy condition T μν k μ k ν > 0 is satisfied (T μν is the stress-energy tensor for all time-like vectors k μ ). In disparity to phantom-dominated models with w < −1, the null energy condition ρ + p < 0 with ρ > 0 is violated. Amazingly, this case is not expelled by astronomical observations. In the previous few years, many different models of DE were explored to fit the CMBR observations as well as LSS observations and observations of supernovae against the background of the accelerated expansion of the universe. Some of the DE are K-essence with mod...