Abstract. It has been reported that resistin induces, whereas apelin inhibits cardiac hypertrophy. However, the underlying molecular mechanisms of apelin inhibiting resistin-induced cardiac hypertrophy remain unclear. The aim of the current study is to investigate the effects of apelin on resistin-induced cardiomyocyte hypertrophy and elucidate the underlying molecular mechanism. H9c2 cells were used in the present study, and cell surface area and protein synthesis were evaluated. Reverse transcription-quantitative polymerase chain reaction was performed to analyze the expression levels of hypertrophic markers, brain natriuretic peptide (BNP) and β-myosin heavy chain (β-MHC). In addition, western blotting was conducted to examine phosphorylation of extracellular signal-regulated kinase (ERK)1/2. Following treatment of H9c2 cells with resistin, cell surface area, protein synthesis, and BNP and β-MHC mRNA expression levels were increased. Subsequent to co-treatment of H9c2 cells with apelin and resistin, lead to the inhibition of resistin-induced hypertrophic effects by apelin. In addition, treatment with resistin increased phosphorylation of ERK1/2, whereas pretreatment with apelin decreased phosphorylation of ERK1/2, which was increased by resistin. These results indicate that resistin-induced cardiac hypertrophy is inhibited by apelin via inactivation of ERK1/2 cell signaling.