2022
DOI: 10.3390/rs14153684
|View full text |Cite
|
Sign up to set email alerts
|

LLAM-MDCNet for Detecting Remote Sensing Images of Dead Tree Clusters

Abstract: Clusters of dead trees are forest fires-prone. To maintain ecological balance and realize its protection, timely detection of dead trees in forest remote sensing images using existing computer vision methods is of great significance. Remote sensing images captured by Unmanned aerial vehicles (UAVs) typically have several issues, e.g., mixed distribution of adjacent but different tree classes, interference of redundant information, and high differences in scales of dead tree clusters, making the detection of de… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2

Citation Types

0
4
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(5 citation statements)
references
References 34 publications
0
4
0
1
Order By: Relevance
“…Li et al. pro-posed the LLAM-MDCNet method based on the MDCN network to detect clusters of dead trees in aerial images, aiming to reduce the interference from complex back-grounds and variable target scales by introducing the LIAM attention module ( Li et al., 2022 ). However, their methods did not achieve the recognition of individual dead trees.…”
Section: Discussionmentioning
confidence: 99%
See 2 more Smart Citations
“…Li et al. pro-posed the LLAM-MDCNet method based on the MDCN network to detect clusters of dead trees in aerial images, aiming to reduce the interference from complex back-grounds and variable target scales by introducing the LIAM attention module ( Li et al., 2022 ). However, their methods did not achieve the recognition of individual dead trees.…”
Section: Discussionmentioning
confidence: 99%
“…In similar studies of dead tree detection, Chiang et al applied transfer learning to the Mask RCNN network for automated detection of SDTs in aerial images (Chiang et al, 2020). Li et al pro-posed the LLAM-MDCNet method based on the MDCN network to detect clusters of dead trees in aerial images, aiming to reduce the interference from complex back-grounds and variable target scales by introducing the LIAM attention module (Li et al, 2022). However, their methods did not achieve the recognition of individual dead trees.…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…Some are to prevent and detect diseases in forest trees using Deep Learning (DL) and Unmanned Aerial Vehicle (UAV) imagery [2][3][4] or satellite high-resolution imagery [5]. The use of UAVs as a remote sensing platform is also a common way of detecting dead trees individually [6] or in clusters [7], as this can help prevent the occurrence of wildfires. The early detection of wildfires can help prevent their progress over forest lands, hence reducing their ecological and societal impact.…”
Section: Introductionmentioning
confidence: 99%
“…В мире широко используются методы дистанционного зондирования Земли (ДЗЗ), с помощью которых можно выполнить множественные исследования в различных областях лесного хозяйства -почвенные, физиологические, таксационные и др. С помощью данных ДЗЗ выявляют очаги возбудителей болезней и вредителей леса [Zhang et al, 2019;Zhu et al, 2021;Garza et al, 2020;Barta et al, 2022;Zhang et al, 2023;Poblete-Echeverria et al, 2023], оценивают биомассы древостоев и их породный состав [Wan et al, 2021;Li et al, 2022;Zhang et al, 2022;Mielczarek et al, 2022;Qiao et al, 2023;, определяют влияние засухи на состояние растений [Moreno-Fernandez et al, 2022] и жизненное состояние лесов [Laze, 2022].…”
unclassified