Wood fibers were modified with alkaline solution and silane coupling agent to study changes on the fiber surface and the influence of these treatments on the mechanical properties, flame resistance, thermal conductivity, and microstructure of wood fiber-phenolic foam composites. Test results indicated that the lignin, waxes, hemicelluloses, and other impurities from the fiber surface were partially dissolved and removed. The mechanical properties of treated wood fiber-phenolic foam composites increased dramatically, the cellular pore distribution was more regular, the size of bubble cells was smaller and more uniform, and the thermal conductivity was reduced, and, in particular, the fragility of treated wood fiber-phenolic foam composites decreased. However, with increasing wood fiber content, the mechanical properties and limited oxygen index (LOI) of composite foam decreased. By comprehensive analysis, it was shown that the interfacial compatibility between the fibers and phenolic resin was improved. Nevertheless, the amount of wood used could not be too high, and the optimum amount was approximately 5%.