This paper addresses the problem of active vibration suppression for a class of Euler-Bernoulli beam system. The objective of this paper is to design a hybrid temporal-spatial differential controller, which is involved with the in-domain and boundary actuators, such that the closed-loop system is stable. The Lyapunov’s direct method is employed to derive the sufficient condition, which not only can guarantee the stabilization of system, but also can improve the spatial cooperation of actuators. In the framework of the linear matrix inequalities (LMIs) technology, the gain matrices of hybrid controller can obtained by developing a recursive algorithm. Finally, the effectiveness of the proposed methodology is demonstrated by applying a numerical simulation.