2023
DOI: 10.1155/2023/4343404
|View full text |Cite
|
Sign up to set email alerts
|

Load‐Balanced Cluster Head Selection Enhancing Network Lifetime in WSN Using Hybrid Approach for IoT Applications

Abstract: In recent times, the deployment of wireless sensor networks becomes important in revolutionary areas such as smart cities, environmental monitoring, smart transportation, and smart industries. The battery power of sensor nodes is limited due to which their efficient utilization is much necessary as the battery is irreplaceable. Efficient energy utilization is addressed as one of the important issues by many researchers recently in WSN. Clustering is one of the fundamental approaches used for efficient energy u… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

1
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
6

Relationship

1
5

Authors

Journals

citations
Cited by 9 publications
(1 citation statement)
references
References 65 publications
1
0
0
Order By: Relevance
“…We have considered Multi-Attribute Decision-Making (MADM) methods for CH's selection from the available alternatives by making suitable coordination among these attributes, and comparative analysis has been taken in LEACH, LEACH-C, EECS, HEED, HEEC, and DEECET algorithms. The experimental results validate that using MADM approaches, the proposed APRO algorithm proves to be one of the better exhibits for choosing the available CHs [50,51].…”
Section: Related Worksupporting
confidence: 61%
“…We have considered Multi-Attribute Decision-Making (MADM) methods for CH's selection from the available alternatives by making suitable coordination among these attributes, and comparative analysis has been taken in LEACH, LEACH-C, EECS, HEED, HEEC, and DEECET algorithms. The experimental results validate that using MADM approaches, the proposed APRO algorithm proves to be one of the better exhibits for choosing the available CHs [50,51].…”
Section: Related Worksupporting
confidence: 61%