Deployment of new radio technologies in the mobile world has been steadily gaining momentum as an alternative to meet the ever increasing demands of customers. This has especially been motivated by the existence of applications that make available to ordinary users a host of services that require higher spectral efficiency and data rates. LTE (Long Term Evolution) and LTE Advanced (LTE-A) with an enhanced air interface and optimized packet data architecture, an all IP network, is envisioned to provide enhanced data rates, reduced latency and cost efficient operations. The deployment of LTE concurrently with the existing legacy cellular systems, such as UMTS in the same cell sites, has proven to enhance the network resources available to the operators. Such deployment, however, is accompanied with many challenges such as mobility and load balancing. The diversity and availability of services which can be supported by several radio access networks, such as legacy 3G and LTE, make the management of radio access selection rather complex. In this paper, we propose a multi-criterion cell selection algorithm for multi radio environment (3G and LTE) based on service request, user profile and user equipment capabilities.