According to the advances in users' service requirements, physical hardware accessibility, and speed of resource delivery, Cloud Computing (CC) is an essential technology to be used in many fields. Moreover, the Internet of Things (IoT) is employed for more communication flexibility and richness that are required to obtain fruitful services. A multi-agent system might be a proper solution to control the load balancing of interaction and communication among agents. This paper proposes a multi-agent load balancing framework that consists of two phases to optimize the workload among different servers with large-scale CC power with various utilities and a significant number of IoT devices with low resources. Different agents are integrated based on relevant features of behavioral interaction using classification techniques to balance the workload. A load balancing algorithm is developed to serve users' requests to improve the solution of workload problems with an efficient distribution. The activity task from IoT devices has been classified by feature selection methods in the preparatory phase to optimize the scalability of CC. Then, the server's availability is checked and the classified task is assigned to its suitable server in the main phase to enhance the cloud environment performance. Multi-agent load balancing framework is succeeded to cope with the importance of using large-scale requirements of CC and (low resources and large number) of IoT.