The use of a geotextile to treat subgrade subsidence after subsidence has occurred is investigated in this paper. To optimize the anchorage length and buried depth of the geotextile and evaluate the influences of the two factors on subgrade subsidence treatment, finite element analysis is performed and validated with existing model tests. The soil pressure, displacement, tensile force and deformation of the geotextile are studied. The results showed that the geotextile prevented an upward development of subsidence and stabilized the upper soil. The increase of the anchorage length of the geotextile transferred greater soil pressure from the subsidence to a stable area, induced a greater tensile force in the geotextile, and resulted in less soil displacement. As the anchorage length of the geotextile increased from 375 mm to 1500 mm, the surface settlement was effectively reduced from 1.05% to 34.18% when comparing to the situation without a geotextile. As the buried depth of the geotextile increased from 2 m to 6 m, the percentage of surface settlement was effectively reduced from 29.14% to 65.91% when comparing with the settlement corresponding to a buried depth of 2 m. It is suggested that the anchorage length of a geotextile should be the length of the subsidence with respect to width and that the buried depth of the geotextile should be 3–4 m for subsidence treatment. This provides insight into the treatment of sinkholes using geosynthetic approaches in karst areas.