This article deals with the design and construction of a robotic vehicle. The first part of the paper focuses on the selection of suitable variants for the robotic vehicle arrangement, i.e., frame, electric motors with gearboxes, wheels, steering and accumulators. Based on the selection of individual components, the robotic vehicle was built. An important part of the robotic vehicle was the design of the suspension of the front wheels. The resulting shape of the springs was experimentally developed from several design variants and subsequently produced by an additive manufacturing process. The last part of article is devoted to the experimental measurement of the acceleration transfer to the upper part of the frame during the passage of the robotic vehicle over differently arranged obstacles. Experimental measurements measured the accelerations that are transferred to the top of the robotic vehicle frame when the front wheels of the vehicle cross over the obstacle (obstacles). The maximum acceleration values are 0.0588 m/s2 in the x-axis, 0.0149 m/s2 in the y-axis and 0.5755 m/s2 in the z-axis. This experimental solution verifies the stiffness of the designed frame and the damping effect of the selected material of the designed springs on the front wheels of the robotic vehicle.