We prove the renormalizability to all orders of a refined Gribov-Zwanziger type action in linear covariant gauges in four-dimensional Euclidean space. In this model, the Gribov copies are taken into account by requiring that the Faddeev-Popov operator is positive definite with respect to the transverse component of the gauge field, a procedure which turns out to be analogous to the restriction to the Gribov region in the Landau gauge. The model studied here can be regarded as the first approximation of a more general nonperturbative BRST invariant formulation of the refined Gribov-Zwanziger action in linear covariant gauges obtained recently in [1,2]. A key ingredient of the set up worked out in [1,2] is the introduction of a gauge invariant field configuration A µ which can be expressed as an infinite non-local series in the starting gauge field A µ . In the present case, we consider the approximation in which only the first term of the series representing A µ is considered, corresponding to a pure transverse gauge field. The all order renormalizability of the resulting action gives thus a strong evidence of the renormalizability of the aforementioned more general nonperturbative BRST invariant formulation of the Gribov horizon in linear covariant gauges.