Rotational transformations describe relativistic effects in rotating frames. There are four major kinematic rotational transformations: the Langevin metric; Post transformation; Franklin transformation; and the rotational form of the absolute Lorentz transformation. The four transformations exhibit different combinations of relativistic effects and simultaneity frameworks, and generate different predictions for relativistic phenomena. Here, the predictions of the four rotational transformations are compared with recent optical data that has sufficient resolution to distinguish the transformations. We show that the rotational absolute Lorentz transformation matches diverse relativistic optical and non-optical rotational data. These include experimental observations of length contraction, directional time dilation, anisotropic one-way speed of light, isotropic two-way speed of light, and the conventional Sagnac effect. In contrast, the other three transformations do not match the full range of rotating-frame relativistic observations.