The benefits of protected areas (PAs) for biodiversity have been questioned in the context of climate change because PAs are static, whereas the distributions of species are dynamic. Current PAs may, however, continue to be important if they provide suitable locations for species to colonize at their leading-edge range boundaries, thereby enabling spread into new regions. Here, we present an empirical assessment of the role of PAs as targets for colonization during recent range expansions. Records from intensive surveys revealed that seven bird and butterfly species have colonized PAs 4.2 (median) times more frequently than expected from the availability of PAs in the landscapes colonized. Records of an additional 256 invertebrate species with less-intensive surveys supported these findings and showed that 98% of species are disproportionately associated with PAs in newly colonized parts of their ranges. Although colonizing species favor PAs in general, species vary greatly in their reliance on PAs, reflecting differences in the dependence of individual species on particular habitats and other conditions that are available only in PAs. These findings highlight the importance of current PAs for facilitating range expansions and show that a small subset of the landscape receives a high proportion of colonizations by range-expanding species.conservation | climate change adaptation | nature reserves M ore than 10% of the Earth's land surface has already been designated as protected area (PA) (1, 2), and there are calls to expand protection to 17% of the land (3, 4). However, the importance of a PA approach to conservation is open to question in the context of anthropogenic climate change and other environmental drivers that are causing species to shift their distributions. Terrestrial species' distributions are shifting to higher latitudes and elevations (5-7), many species are at increased risk of extinction (8,9), and the composition of biological communities is changing (10, 11). These observations, combined with predicted future changes to the composition of biological communities inside PAs (12-16), call into question (i) the long-term protection provided to species by PAs, because species may shift out of the sites where they were previously considered to be protected, and (ii) the legislative basis for protection in situations where legal PA designation stems from the occurrences of particular species or biological communities (17, 18) that may not remain within the PAs in the future. PAs have, on occasion, been downgraded or dedesignated in the face of competing demands (19), and there are suggestions that a PA approach could be outmoded (20) or that underperforming PAs should be replaced (21).However, the overall risk to a species from climate change (and other large-scale drivers of distribution change) depends on the balance between losses of populations within the former range, on the one hand, and gains associated with the colonization of new regions where the climate or other conditions improve (8, 9)....