We use Hodge–Helmholtz decompositions of weighted Sobolev spaces to solve time‐harmonic exterior‐boundary value problems for perturbations of the (aδd+bdδ)‐system (δ: the co‐differential, a, b>0). We prove, that a Fredholm alternative holds true, the eigensolutions decay polynomially at infinity, and that the positive eigenvalues do not accumulate. © 1997 B. G. Teubner Stuttgart‐John Wiley & Sons Ltd.