Differential Equations - Theory and Current Research 2018
DOI: 10.5772/intechopen.75300
|View full text |Cite
|
Sign up to set email alerts
|

Local Discontinuous Galerkin Method for Nonlinear Ginzburg- Landau Equation

Abstract: The Ginzburg-Landau equation has been applied widely in many fields. It describes the amplitude evolution of instability waves in a large variety of dissipative systems in fluid mechanics, which are close to criticality. In this chapter, we develop a local discontinuous Galerkin method to solve the nonlinear Ginzburg-Landau equation. The nonlinear Ginzburg-Landau problem has been expressed as a system of low-order differential equations. Moreover, we prove stability and optimal order of convergence Oh Nþ1 ÀÁ f… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 24 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?