We consider symmetric partial exclusion and inclusion processes in a general graph in contact with reservoirs, where we allow both for edge disorder and wellchosen site disorder. We extend the classical dualities to this context and then we derive new orthogonal polynomial dualities. From the classical dualities, we derive the uniqueness of the non-equilibrium steady state and obtain correlation inequalities. Starting from the orthogonal polynomial dualities, we show universal properties of n-point correlation functions in the non-equilibrium steady state for systems with at most two different reservoir parameters, such as a chain with reservoirs at left and right ends.