Local Evaluation of Large-scale Remote Sensing Machine Learning-generated Building and Road Dataset: The Case of Rwanda
Emmanuel Nyandwi,
Markus Gerke,
Pedro Achanccaray
Abstract:Accurate and up-to-date building and road data are crucial for informed spatial planning. In developing regions in particular, major challenges arise due to the limited availability of these data, primarily as a result of the inherent inefficiency of traditional field-based surveys and manual data generation methods. Importantly, this limitation has prompted the exploration of alternative solutions, including the use of remote sensing machine learning-generated (RSML) datasets. Within the field of RSML dataset… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.