What being walks sometimes on two feet, sometimes on three, and sometimes on four, and is weakest when it has the most?" -The Sphinx's Riddle ABSTRACT: Pattern recognition is one of the most important functionalities for intelligent behavior and is displayed by both biological and artificial systems. Pattern recognition systems have four major components: data acquisition and collection, feature extraction and representation, similarity detection and pattern classifier design, and performance evaluation. In addition, pattern recognition systems are successful to the extent that they can continuously adapt and learn from examples; the underlying framework for building such systems is predictive learning. The pattern recognition problem is a special case of the more general problem of statistical regression; it seeks an approximating function that minimizes the probability of misclassification. In this framework, data representation requires the specification of a basis set of approximating functions. Classification requires an inductive principle to design and model the classifier and an optimization or learning procedure for classifier parameter estimation. Pattern recognition also involves categorization: making sense of patterns not previously seen. The sections of this paper deal with the categorization and functional approximation problems; the four components of a pattern recognition system; and trends in predictive learning, feature selection using "natural" bases, and the use of mixtures of experts in classification.