2019
DOI: 10.1109/access.2018.2888856
|View full text |Cite
|
Sign up to set email alerts
|

Local Feature Descriptor for Image Matching: A Survey

Abstract: Image registration is an important technique in many computer vision applications such as image fusion, image retrieval, object tracking, face recognition, change detection and so on. Local feature descriptors, i.e., how to detect features and how to describe them, play a fundamental and important role in image registration process, which directly influence the accuracy and robustness of image registration. This paper mainly focuses on the variety of local feature descriptors including some theoretical researc… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
48
0
3

Year Published

2019
2019
2023
2023

Publication Types

Select...
6
4

Relationship

0
10

Authors

Journals

citations
Cited by 94 publications
(51 citation statements)
references
References 153 publications
(151 reference statements)
0
48
0
3
Order By: Relevance
“…O último é uma alternativa aberta suportada pela biblioteca OpenCV. Detalhes sobre esses e outros métodos podem ser encontrados no trabalho de Leng et al (2019). Neste texto, a título de ilustração, iremos abordar em um pouco mais de detalhes o método SIFT.…”
Section: Características Visuaisunclassified
“…O último é uma alternativa aberta suportada pela biblioteca OpenCV. Detalhes sobre esses e outros métodos podem ser encontrados no trabalho de Leng et al (2019). Neste texto, a título de ilustração, iremos abordar em um pouco mais de detalhes o método SIFT.…”
Section: Características Visuaisunclassified
“…Traditional image registration algorithms are mainly classified into pixel-based algorithms and feature-based algorithms [5,6]. In pixel-based image registration algorithms, the original pixel values are directly used to estimate the transformation relationship between images [7,8].…”
Section: Introductionmentioning
confidence: 99%
“…High-quality local feature descriptors describe key points with uniqueness, repeatability, accuracy, compactness, and effective representation. These key points can keep robust and constant in terms of scaling, rotation, affine transformation, illumination, and occlusion [ 5 ]. Here we focus on the theoretical and mathematical descriptions of various local feature descriptors.…”
Section: Introductionmentioning
confidence: 99%