2015
DOI: 10.37236/4298
|View full text |Cite
|
Sign up to set email alerts
|

Local Fusion Graphs and Sporadic Simple Groups

Abstract: For a group $G$ with $G$-conjugacy class of involutions $X$, the local fusion graph $\mathcal{F}(G,X)$ has $X$ as its vertex set, with distinct vertices $x$ and $y$ joined by an edge if, and only if, the product $xy$ has odd order. Here we show that, with only three possible exceptions, for all pairs $(G,X)$ with $G$ a sporadic simple group or the automorphism group of a sporadic simple group, $\mathcal{F}(G,X)$ has diameter $2$.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 15 publications
0
0
0
Order By: Relevance