2015
DOI: 10.1353/ajm.2015.0039
|View full text |Cite
|
Sign up to set email alerts
|

Local-global principles for torsors over arithmetic curves

Abstract: We consider local-global principles for torsors under linear algebraic groups, over function fields of curves over complete discretely valued fields. The obstruction to such a principle is a version of the Tate-Shafarevich group; and for groups with rational components, we compute it explicitly and show that it is finite. This yields necessary and sufficient conditions for local-global principles to hold. Our results rely on first obtaining a Mayer-Vietoris sequence for Galois cohomology and then showing that … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

7
104
0
10

Year Published

2015
2015
2023
2023

Publication Types

Select...
7

Relationship

1
6

Authors

Journals

citations
Cited by 54 publications
(121 citation statements)
references
References 32 publications
7
104
0
10
Order By: Relevance
“…3.7] ont montré que si G est connexe et K-rationnel, alors X P (X , G) = 1. Dans [18,Cor. 5.9], ils montrent que pour tout groupe algébrique linéaire G sur K, X 0 (X , G) = ∪ P X P (X , G), où P parcourt tous les ensembles finis de points fermés de X contenant tous les points singuliers de X 0 .…”
Section: Traduction Des Exemplesà Launclassified
“…3.7] ont montré que si G est connexe et K-rationnel, alors X P (X , G) = 1. Dans [18,Cor. 5.9], ils montrent que pour tout groupe algébrique linéaire G sur K, X 0 (X , G) = ∪ P X P (X , G), où P parcourt tous les ensembles finis de points fermés de X contenant tous les points singuliers de X 0 .…”
Section: Traduction Des Exemplesà Launclassified
“…Let Γ be a bipartite connected (multi-)graph, with vertex set V = V 1 ⊔ V 2 and edge set E. Suppose that we are given a Γ-field in the sense of [HHK14, Section 2.1.1]; i.e. a field F v for each v ∈ V and a field F e for each e ∈ E, together with an inclusion F v ֒→ F e whenever v is a vertex of e. These fields and inclusions define an inverse system of fields; and if the inverse limit is a field F then this is called a "factorization inverse system" over F ( [HHK15], Section 2), and the graph together with the associated fields is called a Γ/F -field ([HHK14], Section 2.1.1). In this situation, set F i = v∈V i F v for i = 1, 2 and set F 0 = e∈E F e .…”
Section: Diamonds Of Groups and Ringsmentioning
confidence: 99%
“…Recall that for any field E and quadratic form q over E, H 1 (E, SO(q)) classifies quadratic forms of the same dimension and discriminant as q, with q corresponding to the distinguished element of the Galois cohomology set; see [KMRT98,29.29]. (In part (b) below we write µ 2 rather than Z/2Z as in [HHK15]; but these are equivalent since the characteristic is not two. )…”
Section: Applications To Quadratic Formsmentioning
confidence: 99%
See 2 more Smart Citations