Handwritten text recognition has been an ongoing attractive task to research in the field of document analysis and recognition with applications in handwriting forensics, paleography, document examination, and handwriting recognition. In the present research, an automatic method of writer recognition is presented using digitized images of unconstrained texts. Despite the increasing efforts by prior literature on the different methods used for the same purpose, such methods performance, particularly their accuracy, has not been promising, leaving plenty of room for improvements. This method made use of codebook-based writer characterization, with each writing sample represented by a group of computed features from a primary and secondary codebook. The writings were then represented through the computation of the probability of codebook patterns occurrence, and the probability distribution was employed for each writer’s characterization. Writer identification process involved comparing two writings through the computation of the distances between their respective probability distribution. The study carried out experiments to determine the performance of the implemented method in light of rates of identification with the help of standard datasets, namely, KRDOH and IAM, the former being the most current and largest Kurdish handwritten datasets with 1076 writers, and the latter being a dataset containing 650 writers. The outcome of the experiments was promising with a rate of identification of 94.3%, with the proposed method outperforming the state-of-the-art methods by 2–3%.