Abstract:The lens data of a Riemannian manifold with boundary is the collection of lengths of geodesics with endpoints on the boundary together with their incoming and outgoing vectors. We show that negatively-curved Riemannian manifolds with strictly convex boundary are locally lens rigid in the following sense: if g0 is such a metric, then any metric g sufficiently close to g0 and with same lens data is isometric to g0, up to a boundary-preserving diffeomorphism. More generally, we consider the same problem for a wid… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.