P53 is critically important in preventing oncogenesis but its role in inflammation in general and in the function of inflammatory macrophages in particular is not clear. Here, we show that bone marrow-derived macrophages exhibit endogenous p53 activity, which is increased when macrophages are polarized to the M2 (alternatively activated macrophage) subtype. This leads to reduced expression of M2 genes. Nutlin-3a, which destabilizes the p53/MDM2 (mouse double minute 2 homolog) complex, promotes p53 activation and further downregulates M2 gene expression. In contrast, increased expression of M2 genes was apparent in M2-polarized macrophages from p53-deficient and p53 mutant mice. Furthermore, we show, in mice, that p53 also regulates M2 polarization in peritoneal macrophages from interleukin-4-challenged animals and that nutlin-3a retards the development of tolerance to Escherichia coli lipopolysaccharide. P53 acts via transcriptional repression of expression of c-Myc (v-myc avian myelocytomatosis viral oncogene homolog) gene by directly associating with its promoter. These data establish a role for the p53/MDM2/c-MYC axis as a physiological 'brake' to the M2 polarization process. This work reveals a hitherto unknown role for p53 in macrophages, provides further insight into the complexities of macrophage plasticity and raises the possibility that p53-activating drugs, many of which are currently being trialled clinically, may have unforeseen effects on macrophage function. Macrophages have key roles in the response to stress, injury, infection and inflammation. The M1 (classically activated macrophages) are induced by lipopolysaccharide (LPS) and cytokines such as interferon-γ (IFNγ) and characterized by the expression of a wide range of proinflammatory genes. M2 (alternatively activated macrophages) are induced by T helper type 2 (Th2) cytokines such as interleukin-4 (IL4) and IL13 and express high levels of anti-inflammatory and tissue repair marker genes. M2 macrophages perform immunoregulatory functions including defense against infection, promotion of angiogenesis and wound healing. 1 Macrophages exist on a continuum between M1 and M2 subtypes undergoing dynamic changes between these different functional states depending on changes in their microenvironment. This 'plasticity' involves extensive changes in macrophage gene sets and provides the potential to develop drugs to manipulate the macrophage subtype. 2 As such, macrophage polarization, and its molecular basis, has been vigorously researched in recent years.P53 has a crucial role in cancer by controlling the expression of genes involved in apoptosis, cell cycle arrest, metabolism and DNA repair. 3 While inflammation is increasingly recognized as a factor in determining the predisposition to cancer, 4 the role of p53 in inflammation is not clear. Macrophages from p53 − / − mice produce increased quantities of proinflammatory cytokines in response to LPS, 5 while peritoneal macrophage count and susceptibility to lethal septic shock are increased in p53 − ...