2023
DOI: 10.1088/1751-8121/ad07c6
|View full text |Cite
|
Sign up to set email alerts
|

Local minimizers of the distances to the majorization flows

María José Benac,
Pedro Massey,
Noelia Rios
et al.

Abstract: Let $\mathcal{D}(d)$ denote the convex set of density matrices of size $d$ and let $\rho,\,\sigma\in\mathcal{D}(d)$ be such that $\rho\not\prec \sigma$. Consider the majorization flows $\mathcal{L}(\sigma)=\{\mu \in\mathcal{D}(d) \ : \ \mu\prec \sigma\}$ and $\mathcal{U}(\rho)=\{\nu\in\mathcal{D}(d) \ : \ \rho\prec \nu\}$, where $\prec$ stands for the majorization pre-order relation. We endow $\mathcal{L}(\sigma)$ and $\mathcal{U}(\rho)$ with the metric induced by the spectral norm. Let $N(\cdot)$ be a strictl… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 26 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?