Filtering is a core operation in low level computer vision. It is a preliminary process in many biomedical image processing applications. Bilateral filtering has been applied to smooth biomedical images while preserving the edges. However, to avoid oversmoothing structures of sizes comparable to the image resolutions, a narrow spatial window has to be used. This leads to the necessity of performing more iterations in the filtering process. In this paper, we propose a novel filtering technique namely trilateral filter, which can achieve edge-preserving smoothing with a narrow spatial window in only a few iterations. The experimental results have shown that our novel method provides greater noise reduction than bilateral filtering and smooths biomedical images without over-smoothing ridges and shifting the edge locations, as compared to other noise reduction methods.