Cloud computing has revolutionized the way a variety of ubiquitous computing resources are provided to users with ease and on a pay-per-usage basis. Task scheduling problem is an important challenge, which involves assigning resources to users’ Bag-of-Tasks applications in a way that maximizes either system provider or user performance or both. With the increase in system size and the number of applications, the Bag-of-Tasks scheduling (BoTS) problem becomes more complex due to the expansion of search space. Such a problem falls in the category of NP-hard optimization challenges, which are often effectively tackled by metaheuristics. However, standalone metaheuristics generally suffer from certain deficiencies which affect their searching efficiency resulting in deteriorated final performance. This paper aims to introduce an optimal hybrid metaheuristic algorithm by leveraging the strengths of both the Artificial Gorilla Troops Optimizer (GTO) and the Honey Badger Algorithm (HBA) to find an approximate scheduling solution for the BoTS problem. While the original GTO has demonstrated effectiveness since its inception, it possesses limitations, particularly in addressing composite and high-dimensional problems. To address these limitations, this paper proposes a novel approach by introducing a new updating equation inspired by the HBA, specifically designed to enhance the exploitation phase of the algorithm. Through this integration, the goal is to overcome the drawbacks of the GTO and improve its performance in solving complex optimization problems. The initial performance of the GTOHBA algorithm tested on standard CEC2017 and CEC2022 benchmarks shows significant performance improvement over the baseline metaheuristics. Later on, we applied the proposed GTOHBA on the BoTS problem using standard parallel workloads (CEA-Curie and HPC2N) to optimize makespan and energy objectives. The obtained outcomes of the proposed GTOHBA are compared to the scheduling techniques based on well-known metaheuristics under the same experimental conditions using standard statistical measures and box plots. In the case of CEA-Curie workloads, the GTOHBA produced makespan and energy consumption reduction in the range of 8.12–22.76% and 6.2–18.00%, respectively over the compared metaheuristics. Whereas for the HPC2N workloads, GTOHBA achieved 8.46–30.97% makespan reduction and 8.51–33.41% energy consumption reduction against the tested metaheuristics. In conclusion, the proposed hybrid metaheuristic algorithm provides a promising solution to the BoTS problem, that can enhance the performance and efficiency of cloud computing systems.