Background
Bavaria, a large federal state in Germany, has been declared free from infections with Bovine Alphaherpesvirus 1 (BoHV-1) in 2011. To maintain this status the cattle population is monitored for antibodies against BoHV-1 regularly. Several years ago, infrequent but recurrent problems in this sero-surveillance were statistically put into correlation with the presence of antibodies against Bovine Alphaherpesvirus 2 (BoHV-2). In Europe, BoHV-2 is primarily known as the agent causing bovine herpes mammillitis. However, very little information about BoHV-2 infections in Bavaria is available so far. Therefore, the aims of this study were to determine BoHV-2 seroprevalences and to detect virus genomes in potential clinical samples.
Results
6801 blood sera of healthy cattle from all over Bavaria were tested for antibodies against BoHV-2, revealing an overall seroprevalence of 5.51%. Interestingly, seroprevalences markedly varied between the North and the South of Bavaria, namely from 0.42 to 11.17%. Concurrently, the previously reported relation between the epidemiologically inexplicable sero-reactivities in BoHV-1 ELISAs and the presence of BoHV-2 infections were statistically corroborated in this study. To detect BoHV-2 genomes a fast and sensitive real time PCR was established. Using a multiple PCR strategy, tissue samples from skin lesions at relevant localizations, corresponding lymph nodes, and trigeminal ganglia from 111 animals, as well as nasal swabs from 918 bovines with respiratory symptoms were tested. However, BoHV-2 genomes were not detected in any of these samples.
Conclusions
BoHV-2 antibodies were found in samples from bovines all over Bavaria, albeit with an explicit South-North-divide. BoHV-2 genomes, however, could not be detected in any of the analyzed samples, indicating that acute clinical cases as well as obvious virus reactivation are relatively rare. Consequently, the future spread of BoHV-2 infections throughout Bavaria, particularly, after eradicating BoHV-1, has to be further monitored.