A point cloud as a collection of points is poised to bring about a revolution in acquiring and generating three-dimensional (3D) surface information of an object in 3D reconstruction, industrial inspection, and robotic manipulation. In this revolution, the most challenging but imperative process is point could registration, i.e., obtaining a spatial transformation that aligns and matches two point clouds acquired in two different coordinates. In this survey paper, we present the overview and basic principles, give systematical classification and comparison of various methods, and address existing technical problems in point cloud registration. This review attempts to serve as a tutorial to academic researchers and engineers outside this field and to promote discussion of a unified vision of point cloud registration. The goal is to help readers quickly get into the problems of their interests related to point could registration and to provide them with insights and guidance in finding out appropriate strategies and solutions.