The present work studies the existence of monoamine oxidase (MAO) activity in serotonergic endings present in rat major cerebral arteries. Enzymatic activity was appraised in vivo by serotonin (5-HT) accumulation or 5-hydroxyindole acetic acid (5-HIAA) disappearance with time after systemic administration of MAO inhibitors. Pargyline (75 mg/Kg, ip) brought about significant 5-HT increase and 5-HIAA decrease in major cerebral arteries 30 and 60 min after its administration. Clorgyline (75 mg/Kg, ip) also induced 5-HT enhancement and 5-HIAA decline in these arteries 30 and 60 min after its injection. However, treatment with deprenyl (75 mg/Kg, ip) only evoked a significant 5-HT increase at 60 min. When either clorgyline (5 mg/Kg, ip) or deprenyl (5 mg/Kg, ip) were administered 5-HT and 5-HIAA levels remained unaffected. Two weeks after performing electrolytical lesion of dorsal raphe nucleus and 60 min after clorgyline (75 mg/Kg, ip) injection 5-HT and 5-HIAA levels appeared significantly reduced in cerebral arteries and striatum when compared to sham-lesioned controls. These results suggest that MAO-A isoform acting on endogenous 5-HT is present in rat major cerebral arteries and is located in nerve endings of fibers arising from dorsal raphe nucleus.