Tau, MAP2, and MAP4 are members of a microtubuleassociated protein (MAP) family that are each expressed as "3-repeat" and "4-repeat" isoforms. These isoforms arise from tightly controlled tissue-specific and/or developmentally regulated alternative splicing of a 31-amino acid long "inter-repeat:repeat module," raising the possibility that different MAP isoforms may possess some distinct functional capabilities. Consistent with this hypothesis, regulatory mutations in the human tau gene that disrupt the normal balance between 3-repeat and 4-repeat tau isoform expression lead to a collection of neurodegenerative diseases known as FTDP-17 (fronto-temporal dementias and Parkinsonism linked to chromosome 17), which are characterized by the formation of pathological tau filaments and neuronal cell death. Unfortunately, very little is known regarding structural and functional differences between the isoforms. In our previous analyses, we focused on 4-repeat tau structure and function. Here, we investigate 3-repeat tau, generating a series of truncations, amino acid substitutions, and internal deletions and examining the functional consequences. 3-Repeat tau possesses a "core microtubule binding domain" composed of its first two repeats and the intervening inter-repeat. This observation is in marked contrast to the widely held notion that tau possesses multiple independent tubulin-binding sites aligned in sequence along the length of the protein.In addition, we observed that the carboxyl-terminal sequences downstream of the repeat region make a strong but indirect contribution to microtubule binding activity in 3-repeat tau, which is in contrast to the negligible effect of these same sequences in 4-repeat tau. Taken together with previous work, these data suggest that 3-repeat and 4-repeat tau assume complex and distinct structures that are regulated differentially, which in turn suggests that they may possess isoform-specific functional capabilities. The relevance of isoform-specific structure and function to normal tau action and the onset of neurodegenerative disease are discussed.