Abstract-Practical face recognition systems are sometimes confronted with low-resolution face images. Traditional two-step methods solve this problem through employing super-resolution (SR). However, these methods usually have limited performance because the target of SR is not absolutely consistent with that of face recognition. Moreover, time-consuming sophisticated SR algorithms are not suitable for real-time applications. To avoid these limitations, we propose a novel approach for LR face recognition without any SR preprocessing. Our method based on coupled mappings (CMs), projects the face images with different resolutions into a unified feature space which favors the task of classification. These CMs are learned through optimizing the objective function to minimize the difference between the correspondences (i.e., low-resolution image and its high-resolution counterpart). Inspired by locality preserving methods for dimensionality reduction, we introduce a penalty weighting matrix into our objective function. Our method significantly improves the recognition performance. Finally, we conduct experiments on publicly available databases to verify the efficacy of our algorithm.