2019
DOI: 10.14483/22487638.13653
|View full text |Cite
|
Sign up to set email alerts
|

Localización del punto óptimo de partida en el problema de ruteo vehicular con capacidad restringida (CVRP)

Abstract: Contexto: Esta investigación resuelve el problema de encontrar el punto óptimo de localización de una flota de vehículos recolectores de basura y las rutas óptimas para minimizar el costo de su recolección, en 144 barrios del municipio de Dosquebradas, Risaralda (Colombia), utilizando 8 vehículos con capacidad homogénea de 25 toneladas de la empresa Serviciudad. Métodos: Primero, se utilizó una heurística de barrido (Ospina Toro y Orrego, 2016) para encontrar un buen punto de partida para los vehículos d… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 14 publications
0
1
0
Order By: Relevance
“…According to Hernández-Santibáñez et al (2017) and Solarte et al (2018), the facility layout problem (FLP) aims to obtain an optimal design for the allocation and flexible configuration of available machines, equipment, resources, and physical space in order to facilitate the movement and handling of material, as well as to allow plants to have optimized performance and production flow, i.e., with respect to a minimum production cost and total time. Traditionally, the study of such problems regarding distribution, spatial flow, and optimization has been addressed via dynamic programming techniques and combinatorial optimization, as per Jara-Estupiñan et al (2020) and Dey (2020).…”
Section: Introductionmentioning
confidence: 99%
“…According to Hernández-Santibáñez et al (2017) and Solarte et al (2018), the facility layout problem (FLP) aims to obtain an optimal design for the allocation and flexible configuration of available machines, equipment, resources, and physical space in order to facilitate the movement and handling of material, as well as to allow plants to have optimized performance and production flow, i.e., with respect to a minimum production cost and total time. Traditionally, the study of such problems regarding distribution, spatial flow, and optimization has been addressed via dynamic programming techniques and combinatorial optimization, as per Jara-Estupiñan et al (2020) and Dey (2020).…”
Section: Introductionmentioning
confidence: 99%