Underwater Sensor Networks (UWSNs) can enable a broad range of applications such as resource monitoring, disaster prevention, and navigation-assisted. It is especially relevant for sensor nodes location in UWSNs. Global Positioning System (GPS) is not suitable for using in UWSNs because of the underwater propagation problems. Hence some localization algorithms based on the precise time synchronization between sensor nodes have been proposed which are not feasible for UWSNs. In this paper, we propose a localization algorithm called Two-Phase Time Synchronization-Free Localization Algorithm (TP-TSFLA). TP-TSFLA contains two phases, namely, range-based estimation phase and range-free evaluation phase. In the first phase, we address a time synchronization-free localization scheme base on the Particle Swarm Optimization (PSO) algorithm to decrease the localization error. In the second phase, we propose a Circle-based Range-Free Localization Algorithm (CRFLA) to locate the unlocalized sensor nodes which cannot obtain the location information through the first phase. In the second phase, sensor nodes which are localized in the first phase act as the new anchor nodes to help realize localization. Hence in this algorithm, we use a small number of mobile beacons to help achieve location without any other anchor nodes. Besides, to improve the precision of the range-free method, an extension of CRFLA by designing a coordinate adjustment scheme is updated. The simulation results show that TP-TSFLA can achieve a relative high localization ratio without time synchronization.