The objectives were to evaluate effects of maternal nutrient restriction and stage of gestation on maternal and fetal visceral organ mass and indices of jejunal growth and vascularity in beef cows. Thirty multiparous beef cows (BW = 571 +/- 63 kg; BCS = 5.4 +/- 0.7) carrying female fetuses (d 30 of gestation) were allocated to receive a diet of native grass hay (CON; 12.1% CP, 70.7% IVDMD, DM basis) to meet NRC recommendations for BW gain during early gestation or a nutrient-restricted diet of millet straw (NR; 9.9% CP, 54.5% IVDMD, DM basis) to provide 68.1% of NE(m) and 86.7% of MP estimated requirements. On d 125 of gestation, 10 CON and 10 NR cows were killed and necropsied. Five remaining CON cows received the CON diet, and 5 NR cows were realimented with a concentrate supplement (13.2% CP, 77.6% IVDMD, DM basis) and the CON hay to achieve a BCS similar to CON cows by d 220 of gestation. Remaining cows were necropsied on d 245 of gestation. Cow BW and eviscerated BW (EBW) were less (P < 0.01) for NR than CON at d 125 but did not differ (P > 0.63) at d 245. Cows fed the CON diet had greater (P < 0.09) total gastrointestinal (GI) tract, omasal, and pancreatic weights. Stomach complex, ruminal, and liver weights were greater for CON than NR cows (P < 0.09) on d 125. Total GI, stomach complex, and pancreatic weights increased (P < 0.001) with day of gestation. Restricted cows had decreased (P = 0.09) duodenal RNA:DNA compared with CON. Duodenal DNA was less (P = 0.01) and jejunal RNA:DNA (P = 0.09) was greater for cows at d 125 vs. 245. Cow jejunal capillary area density increased with day of gestation (P = 0.02). Fetal BW and EBW were unaffected by dietary treatment (P > or = 0.32). Total GI tract and all components increased in mass with day of gestation (P < 0.001). Fetuses from NR dams had greater (P = 0.003) reticular mass at d 245 than CON fetuses. Fetuses from NR cows had greater (P = 0.02) percent jejunal proliferation at d 125 and greater (P = 0.03) total intestinal vascularity (mL) at d 245. Fetal jejunal DNA decreased (P = 0.09), RNA:DNA increased (P = 0.05), and total jejunal proliferating cells increased (P < 0.001) with day of gestation. Jejunal capillary area density, number density, and surface density were greater (P < 0.008) during late gestation. Results indicate that maternal and fetal intestines undergo changes during gestation, which can be affected by nutrient restriction and may partially explain differences observed in fetal development and postnatal performance.