2021
DOI: 10.48550/arxiv.2111.15131
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Localization in quantum walks with periodically arranged coin matrices

Abstract: There is a property called localization, which is essential for applications of quantum walks. From a mathematical point of view, the occurrence of localization is known to be equivalent to the existence of eigenvalues of the time evolution operators, which are defined by coin matrices. A previous study proposed an approach to the eigenvalue problem for space-inhomogeneous models using transfer matrices. However, the approach was restricted to models with homogeneous time evolution in positions sufficiently fa… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?